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On Hamiltonian Cycles as Optimal p-Cycles
Dominic A. Schupke, Member, IEEE

Abstract— Using Hamiltonian p-cycles, it can be shown that
p-cycle design is able to reach the logical redundancy bound of
1/(d− 1) where d is the average node degree. We formulate two
conditions on which the design is able to reach this bound if and
only if Hamiltonian p-cycles are used.

I. INTRODUCTION

p-Cycles represent a both fast and capacity-efficient recov-
ery mechanism [1]. The special case of Hamiltonian p-cycles
has recently attracted much interest [1], [2], [3], [4], since
it provides an insight into lower bounds on capacity. In this
paper, we prove a basic lower bound along with finding
conditions on which Hamiltonian p-cycles are necessary and
sufficient to reach this bound. Besides enhancing prior analyti-
cal results on the topic, the results of this paper are practically
useful for the design of p-cycle networks, since it can facilitate
cycle selection, topology analysis, and capacity estimating.

We can summarize the concept of p-cycle protection as
follows (for more detail see [1], Chap. 10). Figure 1 illustrates
the protection principle of p-cycles for link protection. The
p-cycle in Figure 1(a) is preconfigured as a closed connection
on the cycle B-C-D-F-E-B, requiring one protection capacity
unit (e.g., a WDM channel) on its links. Preconfiguration
means that the configuration is done before a failure occurs.

The p-cycle is able to protect working capacity on its own
links, called on-cycle links, as shown in Figure 1(b). Upon
failure of on-cycle link B-C, the p-cycle offers protection by
the route on the remainder of the cycle (C-D-F-E-B). The
protectable capacity on on-cycle links is thus one capacity
unit. p-Cycles also protect links outside the p-cycle: Each
link which has both its end points on the p-cycle can also
be protected. Figure 1(c) shows the protection of such a
link (E-D) which is called straddling link. We can provide two
protection routes for straddling links, in the example, routes
E-B-C-D and E-F-D. In effect, we can protect two working
capacity units of straddling links.

Since the nodes adjacent to the failure perform protection
switching, fast recovery times are possible. Multiple p-cycles
can be used to cover the network.

II. NON-JOINT OPTIMIZATION MODEL FOR p-CYCLE

SELECTION

We review the basic mathematical optimization model for
the capacity-optimal selection of link-protecting p-cycles in
circuit-switched networks with given working capacity [1].
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Non-joint optimization refers to the methodology that pro-
tection capacity optimization (here, for p-cycles) is separated
from working capacity optimization. A standard way for the
latter is, e.g., that demands are routed on the shortest paths
(with a desired link metric); we then obtain the working
capacity on a link as the sum of all demands routed through
it.

To assess the efficiency of a network design solution, the
concept of redundancy comes in place, which measures the
additional resources needed to protect the working resources.
We define the logical redundancy, or simply redundancy, as
the ratio of the protection capacity to the working capacity.
The logical redundancy is often called “efficiency ratio.” The
cost-weighted redundancy is the ratio of the cost-weighted pro-
tection capacity to the cost-weighted working capacity, where
the weights are given cost-values per link. Conclusions about
bounds on general cost values are hard to draw, since we can
often construct arbitrary special cases (see [1]). Therefore, we
study the more general logical redundancy measure. The virtue
is that this redundancy measure holds for any optimization
model with arbitrary cost optimization.

The network to be protected is modeled by an undirected
and two-connected graph G = (V, E) without self-looping or
parallel edges (links). Associated with the graph is an edge
cost vector z, a working capacity vector w, and a protection
capacity vector p; all vectors are of size |E|. Based on a set
of (precomputed) cycles C, the two matrices Π and Φ, both
of size |E| by |C|, are given. A matrix entry πe,k ∈ {0, 1}
of Π indicates whether edge e ∈ E is element of cycle k ∈ C
or not. The matrix entry φe,k ∈ {0, 1, 2} of Φ indicates how
many working capacity units on edge e ∈ E are protectable
by a single p-cycle on cycle k ∈ C. The values of zero, one,
and two represent non-protectable links, on-cycle links, and
straddling links, respectively. At this point we also define the
straddling link matrix Σ = 1

2 (Φ − Π). A matrix entry of Σ
indicates whether edge e ∈ E is a straddling link of cycle k ∈
C or not. For the p-cycles configuration, we are interested in
the number of p-cycles nk for each cycle k ∈ C that is needed.
The corresponding vector of size |C| is denoted by n.

The basic problem for non-joint optimization can be formu-
lated in vector/matrix notation [1]:

min zT p (1)

p = Πn (2)

w ≤ Φn (3)

p ∈ [0,∞)|E| (4)

n ∈ {0, 1, 2, . . .}|C| (5)

The operation “≤” applies to each entry of the vector. The
Objective (1) minimizes the cost-weighted protection capacity
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(a) A p-cycle (dashed line) in a network.
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(b) Protection of an on-cycle link.
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(c) Protection of a straddling link.

Fig. 1. Protection principle of p-cycles for link protection.

(which is equivalent to minimizing the cost-weighted re-
dundancy), Constraint (2) determines the protection capacity
allocation, and Constraint (3) ensures the working capacity
to be protected. The protection capacity variables are defined
in (4) and the integer number of p-cycles are defined in (5).

III. RELATIONSHIP TO HAMILTONIAN CYCLES

For link recovery mechanisms, which include p-cycles as a
special case, we can state the well-known lower bound 1/(d−
1) as bound on the logical redundancy, i.e., the protection
capacity to working capacity ratio [1]. The bound is expressed
as function of the average node degree d.

A Hamiltonian cycle is a cycle which traverses all nodes
of the graph exactly once. The network in Figure 1, e.g., has
exactly two Hamiltonian cycles (A-B-C-F-D-E-A and A-B-C-
D-F-E-A).

For p-cycles, reference [1] shows that a p-cycle reaches the
lower bound by construction of a Hamiltonian cycle. This im-
plies that p-cycles are not hindered structurally from reaching
the bound (note that this is, e.g., unlike link-protection rings
for which the redundancy cannot be lower than one). We can
also learn from such optimal constructions how to guide the
p-cycle design for reaching or coming close to the bound. The
general ability to reach the bound is, however, no guarantee
that any design instance can be realized with low redundancy.

Against this background, we aim to find an answer to the
question: On which condition do p-cycles reach the 1/(d− 1)
lower bound only by p-cycles which are Hamiltonian?

We partition the cycle set into Hamiltonian (Ch) and non-
Hamiltonian (Ch) and rewrite (2)-(3)

p = Πhnh + Πhnh (6)

w + ∆w = Φhnh + Φhnh (7)

where ∆w ∈ [0,∞)|E| denotes a slack vector variable. For
a feasible set of p-cycles, ∆w is the capacity that could be
protected in excess of the working capacity.

We ask when the redundancy is equal to the lower bound,
i.e.,

r =
11Tp
11Tw

!=
1

d − 1
(8)

where 11 is a vector, of suitable size, which has only entries
of one. With (6)-(7) and d = 2|E|

|V | we obtain

(8) ⇔ 11T Πhnh + 11TΠhnh

11TΦhnh + 11TΦhnh − 11T
∆w

=
|V |

2|E| − |V | . (9)

It is easy to see, that a Hamiltonian p-cycle has |V | on-cycle
edges while the other |E| − |V | edges can become straddling
edges. Thus, such a p-cycle is able to protect |V | + 2(|E| −
|V |) = 2|E| − |V | working capacity units. Therefore, we can
simplify as follows

11TΠh = |V |11T and 11T Φh = (2|E| − |V |)11T . (10)

This results into expression

(9) ⇔
11T nh + 1

|V |11
T Πhnh

11Tnh + 1
(2|E|−|V |)11

TΦhnh − 1
(2|E|−|V |)11

T
∆w

= 1.

(11)
At this point we can already conclude, that—if Hamiltonian
cycles exist—just by using the Hamiltonian p-cycles (i.e.,
nh = 0) we can reach the bound if there is no slack (i.e.,
∆w = 0). In [1], [2] this has already been found for p-cycles
based on a single Hamiltonian cycle leading to the proposed
concept of “semi-homogoneous networks.” As such, many
network examples with Hamiltonian p-cycles and no slack can
be constructed; e.g., start from a network with a cycle having
working capacity 1 and arbitrarily add edges with working
capacity 2 to non-connected node-pairs of the cycle. Also
superpositions of such constructed networks belong to this
group, given their number of nodes is equal.

We solve (11) for the slack variables

11T
∆w = 11T (Φh − (d − 1)Πh)nh

= 11T (2Σh − dΠh)nh = 11T Qhnh (12)
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where Σh denotes the straddling-link matrix (Section II) of
all non-Hamiltonian cycles. As ∆w ≥ 0 and nh ≥ 0, we now
ask: On which condition is each column-sum of Qh less than
zero, such that (12) can only hold for nh = 0? We easily
see that the sum of the entries of a column of Qh can be
expressed by the number of on-cycle links νk and the number
of straddling links µk that the respective non-Hamiltonian
cycle k has. Therefore we can write the condition

2µk − dνk < 0, ∀k ∈ C : νk < |V |. (13)

If this condition holds, only Hamiltonian cycles can achieve
the lower bound. Let dmax be the maximum degree in the
network. Then every node of a cycle has at most (dmax − 2)
incident straddling links. If we sum the number of straddling
links per node of a cycle (the number of straddling links are
then counted twice), we can derive the following upper bound
on a cycle’s number of straddling links

µk ≤ 1
2
(dmax − 2)νk, ∀k ∈ C. (14)

Combining (13) and (14) leads to a degree-based condition

dmax − 2 < d. (15)

Hence, if the average degree is greater than the maximum
degree diminished by two, only Hamiltonian p-cycles can
achieve the lower bound. On the contrary, on condition (13),
or even (15), we cannot achieve the best possible solution, if
the graph is not Hamiltonian or if Hamiltonian cycles are not
feasible for a network (e.g., because of length restrictions to
avoid overly signal degration in optical networks).

It is interesting that condition (15) is fulfilled for many prac-
tical optical networks, since these are often (two-connected)
networks with dmax = 3 or dmax = 4 (implicitly d > 2).
We also inspect that for an optimal combination of Hamil-
tonian p-cycles exactly covering working capacity (optimal
solution n̂), homogeneous link capacity applies, since w+p =
Πn̂ + Φn̂ = 21111T n̂ = a11, with some constant scalar a.

Reference [3] suggests that for homogenous working
capacity networks (w = w11) p-cycles on a single Hamiltonian
cycle will always attain the optimal solution. On condi-
tion (13), however, we can only conclude that p-cycles on one
Hamiltonian cycle or on several (different) Hamiltonian cycles
are optimal. A counterexample is a fully meshed network with
five nodes having w = 3 working capacity units per link.
A single Hamiltonian cycle, requiring three capacity units,
has redundancy r = 3×5

3×10 = 1
2 . Less redundancy is obtained

with two p-cycles, where one is routed link-disjoint from the
other. Since the network is four-edge-connected, this routing
is possible, and we reach r = 1×5+1×5

3×10 = 1
3 = 1

d−1
.

IV. CONCLUSION

A combination of Hamiltonian p-cycles is able to reach
the redundancy limit given by the network-associated
bound 1/(d − 1). On one of two further conditions, Hamil-
tonian p-cycles are the only p-cycles to reach the bound.
The first condition is that every non-Hamiltonian p-cycle has
less straddling links than half of the average node degree
times the number of its on-cycle links. The second (more

restrictive) condition is that the average degree is greater than
the maximum degree diminished by two.
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